cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085397 Numbers that are not perfect powers and whose squarefree part is not congruent to 1 (mod 4).

This page as a plain text file.
%I A085397 #26 Feb 16 2025 08:32:50
%S A085397 2,3,6,7,10,11,12,14,15,18,19,22,23,24,26,28,30,31,34,35,38,39,40,42,
%T A085397 43,44,46,47,48,50,51,54,55,56,58,59,60,62,63,66,67,70,71,72,74,75,76,
%U A085397 78,79,82,83,86,87,88,90,91,92,94,95,96,98,99,102,103,104,106,107,108
%N A085397 Numbers that are not perfect powers and whose squarefree part is not congruent to 1 (mod 4).
%C A085397 Contains A016825. - _Robert Israel_, Mar 20 2016
%C A085397 The asymptotic density of this sequence is 2/3. - _Amiram Eldar_, Mar 09 2021
%H A085397 T. D. Noe, <a href="/A085397/b085397.txt">Table of n, a(n) for n=1..1000</a>
%H A085397 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArtinsConstant.html">Artin's Constant</a>.
%p A085397 f:= proc(n) local F,x;
%p A085397   F:= ifactors(n)[2];
%p A085397   if igcd(seq(f[2],f=F)) > 1 then return false fi;
%p A085397   x:= mul(f[1], f = select(t -> t[2]::odd, F));
%p A085397   x mod 4 <> 1;
%p A085397 end proc:
%p A085397 select(f, [$1..200]); # _Robert Israel_, Mar 20 2016
%t A085397 fi[n_] := fi[n] = FactorInteger[n]; perfectPowerQ[n_] := Length[uf = Union[ fi[n][[All, 2]]]] == 1 && uf[[1]] >= 2; SquareFreePart[n_] := Times @@ Apply[Power, ({#[[1]], Mod[#[[2]], 2]} & ) /@ fi[n], {1}]; ok[n_] := ! perfectPowerQ[n] && Mod[ SquareFreePart[n], 4] != 1; Select[ Range[110], ok] (* _Jean-François Alcover_, Jan 20 2012 *)
%o A085397 (PARI) isok(n) = !ispower(n) && ((core(n) % 4) != 1); \\ _Michel Marcus_, Mar 19 2016
%Y A085397 Subsequence of A007916.
%Y A085397 Cf. A016825.
%K A085397 nonn,easy
%O A085397 1,1
%A A085397 _Eric W. Weisstein_, Jun 27 2003