This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085403 #22 Jan 30 2020 21:29:15 %S A085403 1,-2,-2,-6,-22,-90,-394,-1806,-8558,-41586,-206098,-1037718,-5293446, %T A085403 -27297738,-142078746,-745387038,-3937603038,-20927156706, %U A085403 -111818026018,-600318853926,-3236724317174,-17518619320890,-95149655201962,-518431875418926,-2832923350929742 %N A085403 Expansion of (1-x+sqrt(1-6x+x^2))/2 in powers of x. %C A085403 Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A027307(k)x^k). %H A085403 Vincenzo Librandi, <a href="/A085403/b085403.txt">Table of n, a(n) for n = 0..200</a> %F A085403 G.f.: (1-x+sqrt(1-6x+x^2))/2. (=1/g.f. A006318) %F A085403 Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=y(y-x)+(x+y)x^2 . - _Michael Somos_, May 23 2005 %F A085403 G.f.: Q(0) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 14 2013 %F A085403 a(n) ~ -sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Apr 20 2014 %F A085403 D-finite with recurrence: n*a(n) +3*(-2*n+3)*a(n-1) +(n-3)*a(n-2)=0. - _R. J. Mathar_, Jan 20 2020 %t A085403 CoefficientList[Series[(1-x+Sqrt[1-6x+x^2])/2,{x,0,30}],x] (* _Harvey P. Dale_, Jun 13 2013 *) %o A085403 (PARI) a(n)=polcoeff((1-x+sqrt(1-6*x+x^2+x*O(x^n)))/2,n) %Y A085403 A minor variation of A006318. a(n)=-A006318(n-1), n>1. %K A085403 sign %O A085403 0,2 %A A085403 _Michael Somos_, Jun 28 2003