This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085409 #16 Jan 10 2023 01:51:44 %S A085409 0,12,84,270,624,1200,2052,3234,4800,6804,9300,12342,15984,20280, %T A085409 25284,31050,37632,45084,53460,62814,73200,84672,97284,111090,126144, %U A085409 142500,160212,179334,199920,222024,245700,271002,297984,326700,357204,389550,423792,459984 %N A085409 Sum of three solutions of the Diophantine equation x^2 - y^2 = z^3. %C A085409 Parametric representation of the solution is (x, y, z) = (6n^3, 3n^3, 3n^2), thus getting a(n) = 9n^3 + 3n^2. %H A085409 Colin Barker, <a href="/A085409/b085409.txt">Table of n, a(n) for n = 0..1000</a> %H A085409 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A085409 a(n) = 9*n^3 + 3*n^2. %F A085409 From _Colin Barker_, Oct 25 2019: (Start) %F A085409 G.f.: 6*x*(2 + 6*x + x^2) /(1 - x)^4. %F A085409 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. %F A085409 (End) %F A085409 From _Amiram Eldar_, Jan 10 2023: (Start) %F A085409 Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(3)*Pi/6 + 3*log(3)/2 - 3. %F A085409 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 - Pi/sqrt(3) - 2*log(2) + 3. (End) %t A085409 Table[9n^3 + 3n^2, {n, 0, 34}] %o A085409 (PARI) concat(0, Vec(6*x*(2 + 6*x + x^2) /(1 - x)^4 + O(x^40))) \\ _Colin Barker_, Oct 25 2019 %o A085409 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 6*x*(2 + 6*x + x^2) /(1 - x)^4)); // _Marius A. Burtea_, Oct 25 2019 %Y A085409 Cf. A085377. %K A085409 nonn,easy %O A085409 0,2 %A A085409 Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 13 2003 %E A085409 More terms from _Robert G. Wilson v_, Aug 16 2003