cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085413 Prime such that concatenation of it and its first digit is prime.

This page as a plain text file.
%I A085413 #12 Mar 24 2023 16:56:10
%S A085413 13,19,31,37,79,103,109,151,157,181,193,331,337,353,359,367,373,379,
%T A085413 383,751,757,787,919,941,947,953,967,971,983,1009,1021,1033,1039,1063,
%U A085413 1069,1117,1201,1249,1279,1291,1459,1483,1489,1567,1579,1597,1609,1663,1669
%N A085413 Prime such that concatenation of it and its first digit is prime.
%C A085413 Indices of primes in A085412; primes as concatenation of prime and its first digit in A085414.
%H A085413 Robert Israel, <a href="/A085413/b085413.txt">Table of n, a(n) for n = 1..10000</a>
%F A085413 Prime[A085412]
%e A085413 13 is a term because concatenation of 13 and 1 is prime.
%p A085413 R:= NULL: count:= 0:
%p A085413 for d from 1 while count < 100 do
%p A085413   for a in [1,3,7,9] do
%p A085413     for x from 1 to 10^d-1 by 2 while count < 100 do
%p A085413       if isprime(a*10^d + x) and isprime(a*10^(d+1)+10*x+a) then
%p A085413         R:= R, a*10^d+x; count:= count+1
%p A085413 fi od od od:
%p A085413 R; # _Robert Israel_, Mar 24 2023
%o A085413 (Python)
%o A085413 from itertools import count, islice
%o A085413 from sympy import isprime, primerange
%o A085413 def agen(): # generator of terms
%o A085413     for d in count(1):
%o A085413         for f in [1, 3, 7, 9]:
%o A085413             for p in primerange(f*10**d, (f+1)*10**d):
%o A085413                 if isprime(10*p+f):
%o A085413                     yield p
%o A085413 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Mar 24 2023
%Y A085413 Cf. A085412, A085414.
%K A085413 nonn,base
%O A085413 1,1
%A A085413 _Zak Seidov_, Jun 29 2003