This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085413 #12 Mar 24 2023 16:56:10 %S A085413 13,19,31,37,79,103,109,151,157,181,193,331,337,353,359,367,373,379, %T A085413 383,751,757,787,919,941,947,953,967,971,983,1009,1021,1033,1039,1063, %U A085413 1069,1117,1201,1249,1279,1291,1459,1483,1489,1567,1579,1597,1609,1663,1669 %N A085413 Prime such that concatenation of it and its first digit is prime. %C A085413 Indices of primes in A085412; primes as concatenation of prime and its first digit in A085414. %H A085413 Robert Israel, <a href="/A085413/b085413.txt">Table of n, a(n) for n = 1..10000</a> %F A085413 Prime[A085412] %e A085413 13 is a term because concatenation of 13 and 1 is prime. %p A085413 R:= NULL: count:= 0: %p A085413 for d from 1 while count < 100 do %p A085413 for a in [1,3,7,9] do %p A085413 for x from 1 to 10^d-1 by 2 while count < 100 do %p A085413 if isprime(a*10^d + x) and isprime(a*10^(d+1)+10*x+a) then %p A085413 R:= R, a*10^d+x; count:= count+1 %p A085413 fi od od od: %p A085413 R; # _Robert Israel_, Mar 24 2023 %o A085413 (Python) %o A085413 from itertools import count, islice %o A085413 from sympy import isprime, primerange %o A085413 def agen(): # generator of terms %o A085413 for d in count(1): %o A085413 for f in [1, 3, 7, 9]: %o A085413 for p in primerange(f*10**d, (f+1)*10**d): %o A085413 if isprime(10*p+f): %o A085413 yield p %o A085413 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Mar 24 2023 %Y A085413 Cf. A085412, A085414. %K A085413 nonn,base %O A085413 1,1 %A A085413 _Zak Seidov_, Jun 29 2003