A085436 Number of partitions of n without rotational symmetry (or 1-fold symmetry).
1, 0, 1, 1, 5, 2, 13, 8, 21, 17, 54, 31, 99, 70, 139, 131, 295, 207, 488, 387, 698, 657, 1253, 995, 1923, 1707, 2785, 2670, 4563, 3900, 6840, 6287, 9606, 9445, 14746, 13517, 21635, 20614, 30000, 29903, 44581, 42067, 63259
Offset: 1
Keywords
Examples
a(6)=2 since the 11 partitions of 6 consist of 4 having 6-fold symmetry: {6},{3,3},{2,2,2},{1,1,1,1,1,1}; 1 with 3-fold: {3,1,1,1}; 4 with 2-fold: {4,2},{4,1,1},{2,2,1,1},{2,1,1,1,1}; and only 2 with 1-fold symmetry (= no rotational symmetry): {5,1} and {3,2,1}.
Crossrefs
Cf. A084423.
Programs
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; f := Function[{n, d}, Cases[ Partitions[n], q_List /; (Union[ Mod[ (First[ # ] Length[ # ] &) /@ Split[q], d]] == {0})]]; fixp[j_] := Table[d = Part[ Divisors[n], k]; Length@f[n, d], {n, j}, {k, DivisorSigma[0, n]}]; Do[ Print[ Last[ Table[ Fold[ Plus, 0, MoebiusMu[ n/ Divisors[n]] Reverse[ fixp[i][[i]] ]], {n, i}]]], {i, 1, 43}]
Extensions
Edited and extended by Robert G. Wilson v, Aug 15 2003
Comments