cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085490 Number of pairs with two different elements which can be obtained by selecting unique elements from two sets with n+1 and n^2 elements respectively and n common elements.

This page as a plain text file.
%I A085490 #40 Sep 08 2022 08:45:11
%S A085490 0,1,10,33,76,145,246,385,568,801,1090,1441,1860,2353,2926,3585,4336,
%T A085490 5185,6138,7201,8380,9681,11110,12673,14376,16225,18226,20385,22708,
%U A085490 25201,27870,30721,33760,36993,40426,44065,47916,51985,56278,60801,65560,70561,75810,81313
%N A085490 Number of pairs with two different elements which can be obtained by selecting unique elements from two sets with n+1 and n^2 elements respectively and n common elements.
%H A085490 Vincenzo Librandi, <a href="/A085490/b085490.txt">Table of n, a(n) for n = 0..1000</a>
%H A085490 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A085490 a(n) = n^3 + n^2 - n = n*A028387(n-1).
%F A085490 a(n) = A081437(n-1), n>0. - _R. J. Mathar_, Sep 12 2008
%F A085490 G.f.: x*(1+6*x-x^2)/(1-x)^4. - _Robert Israel_, Dec 05 2014
%F A085490 E.g.f.: x*(1+4*x+x^2)*exp(x). - _Robert Israel_, Dec 05 2014
%F A085490 For q a prime power, a(q) is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GL(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, each of the remaining q^2-1 nilpotent matrices commutes with exactly q nilpotent matrices.) - _Mark Wildon_, Jun 18 2017
%e A085490 a(2) = 10 because we can write a(2) = 2^3 + 2^2 - 2 = 10.
%p A085490 a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=0..30); # _Zerinvary Lajos_, Jun 10 2008
%p A085490 a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=0..40);# _Zerinvary Lajos_, Dec 06 2008
%p A085490 seq(n^3+n^2-n, n=0..100); # _Robert Israel_, Dec 05 2014
%t A085490 LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 33}, 60] (* _Vincenzo Librandi_, Jun 22 2017 *)
%o A085490 (Magma) [n^3+n^2-n: n in [0..50]]; // _Vincenzo Librandi_, Jun 22 2017
%Y A085490 Cf. A270109.
%K A085490 nonn,easy
%O A085490 0,3
%A A085490 Polina S. Dolmatova (polinasport(AT)mail.ru), Aug 15 2003