This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085496 #16 Mar 12 2019 18:23:02 %S A085496 0,1,1,1,2,0,1,1,5,3,1,0,2,0,10,1,31,0,0,26,0,6,23,20,0,0,1,13,0,0,1, %T A085496 15,0,14,9,0,0,0,190,0,713,0,42,0,7,9,0,9,6,0,6,2148,0,509,0,120,109, %U A085496 1,0,0,0,4,6,100,0,0,0,0,2,4,0,21897,1,0,3,85,79,0,0,0,19172,0,1130 %N A085496 Number of ways to write prime(n) as sum of distinct divisors of prime(n)+1. %C A085496 a(n) = A085491(A000040(n)); %C A085496 a(A085498(n)) > 0. %H A085496 Alois P. Heinz, <a href="/A085496/b085496.txt">Table of n, a(n) for n = 1..5000</a> %e A085496 n=5, divisors of A000040(5)+1=11+1=12 that are not greater 11: {1,2,3,4,6}, 11=6+4+1=6+3+2, therefore a(5)=2. %p A085496 b:= proc(n, i) option remember; global l; %p A085496 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ %p A085496 `if`(l[i]>n, 0, b(n-l[i], i-1)))) %p A085496 end: %p A085496 a:= proc(n) global l; local p; %p A085496 forget(b); %p A085496 p:= ithprime(n); %p A085496 l:= sort([numtheory[divisors](p+1)[]]); %p A085496 b(p, nops(l)-1) %p A085496 end: %p A085496 seq(a(n), n=1..50); # _Alois P. Heinz_, May 01 2012 %t A085496 Count[Total/@Subsets[Most[Divisors[Prime[#]+1]]],Prime[#]]&/@Range[90] (* _Harvey P. Dale_, Jan 31 2016 *) %K A085496 nonn %O A085496 1,5 %A A085496 _Reinhard Zumkeller_, Jul 03 2003