cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085502 Number of (unordered) ways of making change for n dollars using coins of denominations 1, 5, 10, 25, 50 and 100.

Original entry on oeis.org

1, 293, 2728, 12318, 38835, 98411, 215138, 422668, 765813, 1302145, 2103596, 3258058, 4870983, 7066983, 9991430, 13812056, 18720553, 24934173, 32697328, 42283190, 53995291, 68169123, 85173738, 105413348, 129328925, 157399801, 190145268, 228126178, 271946543
Offset: 0

Views

Author

Jason Earls, Aug 15 2003

Keywords

Crossrefs

Cf. A001300.

Programs

  • PARI
    {a(n)=if(n<0,0,polcoeff(1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100))+ x*O(x^n),n))}
    for(n=0,30,print1(a(n*100)","))
    
  • PARI
    Vec((1 + 287*x + 985*x^2 + 325*x^3 + 2*x^4) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Feb 21 2017

Formula

a(n) = (n + 1) (80 n^4 + 310 n^3 + 362 n^2 + 121 n + 6) / 6. - Dean Hickerson
From Colin Barker, Feb 21 2017: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
G.f.: (1 + 287*x + 985*x^2 + 325*x^3 + 2*x^4) / (1 - x)^6.
(End)