This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085541 #64 Mar 31 2025 07:42:38 %S A085541 1,7,4,7,6,2,6,3,9,2,9,9,4,4,3,5,3,6,4,2,3,1,1,3,3,1,4,6,6,5,7,0,6,7, %T A085541 0,0,9,7,5,4,1,2,1,2,1,9,2,6,1,4,9,2,8,9,8,8,8,6,7,2,0,1,6,7,0,1,6,3, %U A085541 1,5,8,9,5,2,8,1,2,9,5,8,7,6,3,5,6,3,4,2,0,0,5,3,6,9,7,2,5,6,0,5,4,6,7,9,1 %N A085541 Decimal expansion of the prime zeta function at 3. %C A085541 Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - _Jason Kimberley_, Jan 05 2017 %D A085541 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209. %D A085541 J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891. %H A085541 Jason Kimberley, <a href="/A085541/b085541.txt">Table of n, a(n) for n = 0..1497</a> %H A085541 Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High Precision Computation of Hardy-Littlewood Constants</a>, Preprint, 1998. %H A085541 Henri Cohen, <a href="/A221712/a221712.pdf">High-precision computation of Hardy-Littlewood constants</a>. [pdf copy, with permission] %H A085541 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a> %H A085541 R. J. Mathar, <a href="http://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a>, arXiv:0803.0900 [math.NT], 2008-2009. Table 1. %H A085541 Gerhard Niklasch and Pieter Moree, <a href="/A001692/a001692.html">Some number-theoretical constants</a> [Cached copy] %H A085541 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A085541 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {3,0,0} %F A085541 P(3) = Sum_{p prime} 1/p^3 = Sum_{n>=1} mobius(n)*log(zeta(3*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003 %F A085541 Equals A086033 + A085992 + 1/8. - _R. J. Mathar_, Jul 22 2010 %F A085541 Equals Sum_{k>=1} 1/A030078(k). - _Amiram Eldar_, Jul 27 2020 %e A085541 0.1747626392994435364231... %t A085541 (* If Mathematica version >= 7.0 then RealDigits[PrimeZetaP[3]//N[#,105]&][[1]] else : *) m = 200; $MaxExtraPrecision = 200; PrimeZetaP[s_] := NSum[MoebiusMu[k]*Log[Zeta[k*s]]/k, {k, 1, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]; RealDigits[PrimeZetaP[3]][[1]][[1 ;; 105]] (* _Jean-François Alcover_, Jun 24 2011 *) %o A085541 (PARI) recip3(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^3; ); print(v) } %o A085541 (PARI) sumeulerrat(1/p,3) \\ _Hugo Pfoertner_, Feb 03 2020 %o A085541 (Magma) R := RealField(106); %o A085541 PrimeZeta := func<k,N| %o A085541 &+[R|MoebiusMu(n)/n*Log(ZetaFunction(R,k*n)):n in[1..N]]>; %o A085541 Reverse(IntegerToSequence(Floor(PrimeZeta(3,117)*10^105))); %o A085541 // _Jason Kimberley_, Dec 30 2016 %Y A085541 Decimal expansion of the prime zeta function: A085548 (at 2), this sequence (at 3), A085964 (at 4) to A085969 (at 9). %Y A085541 Cf. A002117, A030078, A242302. %K A085541 easy,nonn,cons %O A085541 0,2 %A A085541 _Cino Hilliard_, Jul 02 2003 %E A085541 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003