cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085622 Maximal number of segments (equivalently, corners) in a rook circuit of a 2n X 2n board.

Original entry on oeis.org

1, 4, 12, 28, 56, 88, 132, 180, 240, 304, 380, 460, 552, 648, 756, 868, 992, 1120, 1260, 1404, 1560, 1720, 1892, 2068, 2256, 2448, 2652, 2860, 3080, 3304, 3540, 3780, 4032, 4288, 4556, 4828, 5112, 5400, 5700, 6004, 6320, 6640, 6972, 7308, 7656, 8008, 8372
Offset: 0

Views

Author

R. K. Guy, Jul 11 2003

Keywords

References

  • Problem asked by Barry Cipra arising from Problem 89 of Vaderlind, Guy & Larson, The Inquisitive Problem Solver, MAA.

Programs

  • Mathematica
    CoefficientList[Series[-(4 x^5 - 7 x^4 - 6 x^3 - 4 x^2 - 2 x - 1)/((1 - x)^3*(1 + x)), {x, 0, 46}], x] (* Michael De Vlieger, Mar 11 2021 *)

Formula

a(n) = 4n^2 - 2n if n is even and 4n^2 - 2n - 2 if n is odd and > 1.
From Colin Barker, Oct 05 2012: (Start)
a(n) = -1+(-1)^n-2*n+4*n^2 for n>1.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>5.
G.f.: -(4*x^5-7*x^4-6*x^3-4*x^2-2*x-1)/((1-x)^3*(1+x)). (End)

Extensions

More terms from David Wasserman, May 30 2004