This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085634 #24 Oct 28 2022 07:15:44 %S A085634 5,11,17,35,259 %N A085634 Numbers of the form 2^a + 3^b = 2^c + 3^d for nonnegative a, b, c, d and a <> c. %C A085634 No more terms < 10^4000. - _David Wasserman_, Feb 07 2005 %H A085634 Douglas Edward Iannucci, <a href="https://arxiv.org/abs/1907.03347">On duplicate representations as 2^x+3^y for nonnegative integers x and y</a>, arXiv:1907.03347 [math.NT], 2019. %e A085634 a(5) = 256 + 3 = 2^8 + 3^1 = 259 = 16 + 243 = 2^4 + 3^5. %t A085634 (* Max exponent 8 is sufficient to get all known solutions *) %t A085634 f[_] = 0; Reap[Do[n = 2^a + 3^b; f[n] = f[n] + 1; If[f[n] == 1, ab[n] = {a, b}, If[f[n] >= 2, Print[HoldForm[2^x + 3^y] /. Thread[{x, y} -> ab[n]], " = ", HoldForm[2^x + 3^y] /. Thread[{x, y} -> {a, b}], " = ", n]; Sow[n]]], {a, 0, 8}, {b, 0, 8}]][[2, 1]] // Union (* _Jean-François Alcover_, Apr 29 2014 *) %K A085634 nonn,fini,full %O A085634 1,1 %A A085634 _Frank Ellermann_, Jul 11 2003