cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085686 Inverse Euler transform of Bell numbers.

Original entry on oeis.org

1, 1, 3, 9, 34, 135, 610, 2965, 15612, 87871, 526274, 3334850, 22270254, 156172689, 1146640394, 8791424549, 70227355786, 583283741066, 5027823752930, 44903579626132, 414877600876638, 3959945232723603, 38996757506464858, 395749369598406027, 4134132167178705732
Offset: 1

Views

Author

N. J. A. Sloane, Jul 18 2003

Keywords

Crossrefs

Programs

  • Maple
    read transforms; A := series(exp(exp(x)-1),x,60); A000110 := n->n!*coeff(A,x,n); [seq(A000110(i),i=1..30)]; EULERi(%);
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(combinat:-bell):
    seq(a(n), n = 1..25); # Peter Luschny, Nov 21 2022
  • Mathematica
    n=24; eq[0] = Rest[ Thread[ CoefficientList[ 1 + Series[ Sum[ BellB[k]*x^k, {k, 1, n}] - Product[1/(1-x^k)^a[k], {k, 1, n}], {x, 0, n}], x] == 0]]; s[1] = First[ Solve[ First[eq[0]], a[1]]]; Do[eq[k] = Rest[eq[k-1]] /. s[k]; s[k+1] = First[ Solve[ First[eq[k]], a[k+1]]], {k, 1, n-1}]; Table[a[k], {k, 1, n}] /. Flatten[Table[s[k], {k, 1, n}]] (* Jean-François Alcover, Jul 26 2011 *)
    bb = Array[BellB, n = 25]; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i* bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, Apr 15 2016 *)