A085686 Inverse Euler transform of Bell numbers.
1, 1, 3, 9, 34, 135, 610, 2965, 15612, 87871, 526274, 3334850, 22270254, 156172689, 1146640394, 8791424549, 70227355786, 583283741066, 5027823752930, 44903579626132, 414877600876638, 3959945232723603, 38996757506464858, 395749369598406027, 4134132167178705732
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..300
- Nicolas Andrews, Lucas Gagnon, Félix Gélinas, Eric Schlums, and Mike Zabrocki, When are Hopf algebras determined by integer sequences?, arXiv:2505.06941 [math.CO], 2025. See p. 3.
Programs
-
Maple
read transforms; A := series(exp(exp(x)-1),x,60); A000110 := n->n!*coeff(A,x,n); [seq(A000110(i),i=1..30)]; EULERi(%); # The function EulerInvTransform is defined in A358451. a := EulerInvTransform(combinat:-bell): seq(a(n), n = 1..25); # Peter Luschny, Nov 21 2022
-
Mathematica
n=24; eq[0] = Rest[ Thread[ CoefficientList[ 1 + Series[ Sum[ BellB[k]*x^k, {k, 1, n}] - Product[1/(1-x^k)^a[k], {k, 1, n}], {x, 0, n}], x] == 0]]; s[1] = First[ Solve[ First[eq[0]], a[1]]]; Do[eq[k] = Rest[eq[k-1]] /. s[k]; s[k+1] = First[ Solve[ First[eq[k]], a[k+1]]], {k, 1, n-1}]; Table[a[k], {k, 1, n}] /. Flatten[Table[s[k], {k, 1, n}]] (* Jean-François Alcover, Jul 26 2011 *) bb = Array[BellB, n = 25]; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i* bb[[i]] - Sum[s[[d]]*bb[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* Jean-François Alcover, Apr 15 2016 *)