This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085695 #31 Apr 23 2022 16:23:21 %S A085695 0,1,4,34,216,1525,10336,71149,486864,3339106,22881100,156843721, %T A085695 1074985344,7368157369,50501844796,346145466850,2372514562656, %U A085695 16261461342589,111457702083424,763942486626661,5236139616899400 %N A085695 a(n) = Fibonacci(n)*Fibonacci(3n)/2. %C A085695 This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = -3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A215465 (case k = 3). - _Peter Bala_, Jan 17 2014 %C A085695 a(n) + a(n+1) is the numerator of the continued fraction [1,...,1,4,...,4] with n 1's followed by n 4's. - _Greg Dresden_ and _Hexuan Wang_, Aug 16 2021 %H A085695 Michael De Vlieger, <a href="/A085695/b085695.txt">Table of n, a(n) for n = 0..1197</a> %H A085695 H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277. %H A085695 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,19,4,-1). %F A085695 G.f.: ( x - x^3 )/( 1 - 4 x - 19 x^2 - 4 x^3 + x^4 ). %F A085695 Recurrence: a(n+4) = 4*a(n+3) + 19*a(n+2) + 4*a(n+1) - a(n). %F A085695 a(n) = a(-n) and A153173(n) = 1 + 10*a(n) for all n in Z. - _Michael Somos_, Apr 23 2022 %e A085695 G.f. = x + 4*x^2 + 34*x^3 + 216*x^4 + 1525*x^5 + 10336*x^6 + ... - _Michael Somos_, Apr 23 2022 %t A085695 Array[Times @@ MapIndexed[Fibonacci[#]/First@ #2 &, {#, 3 #}] &, 21, 0] (* or *) LinearRecurrence[{4, 19, 4, -1}, {0, 1, 4, 34}, 21] (* or *) %t A085695 CoefficientList[Series[(x - x^3)/(1 - 4 x - 19 x^2 - 4 x^3 + x^4), {x, 0, 20}], x] (* _Michael De Vlieger_, Dec 17 2017 *) %o A085695 (MuPAD) numlib::fibonacci(3*n)*numlib::fibonacci(n)/2 $ n = 0..35; // _Zerinvary Lajos_, May 13 2008 %o A085695 (PARI) a(n) = fibonacci(n)*fibonacci(3*n)/2 \\ _Andrew Howroyd_, Dec 17 2017 %Y A085695 Cf. A153173, A215465. %K A085695 easy,nonn %O A085695 0,3 %A A085695 _Emanuele Munarini_, Jul 18 2003