This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085697 #48 Jul 23 2023 18:22:26 %S A085697 0,0,1,1,4,16,49,169,576,1936,6561,22201,75076,254016,859329,2907025, %T A085697 9834496,33269824,112550881,380757169,1288092100,4357584144, %U A085697 14741602225,49870482489,168710633536,570743986576,1930813074369,6531893843049 %N A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number. %C A085697 In general, squaring the terms of a third-order linear recurrence with signature (x,y,z) will result in a sixth-order recurrence with signature (x^2 + y, x^2*y + z*x + y^2, x^3*z + 4*x*y*z - y^3 + 2*z^2, x^2*z^2 - x*y^2*z - z^2*y, z^2*y^2 - z^3*x, -z^4). - _Gary Detlefs_, Jan 10 2023 %D A085697 R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202. %H A085697 G. C. Greubel, <a href="/A085697/b085697.txt">Table of n, a(n) for n = 0..1000</a> %H A085697 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,6,-1,0,-1). %F A085697 G.f.: x^2*( 1-x-x^2-x^3 )/( (1-3*x-x^2-x^3)*(1+x+x^2-x^3) ). %F A085697 a(n+6) = 2*a(n+5) + 3*a(n+4) + 6*a(n+3) - a(n+2) - a(n). %F A085697 a(n) = (-A057597(n-2) + 3*A057597(n-1) + 6*A057597(n) + 5*A113300(n-1) - A099463(n-2))/11. - _R. J. Mathar_, Aug 19 2008 %t A085697 LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* _Harvey P. Dale_, Oct 26 2020 *) %o A085697 (Maxima) %o A085697 t[0]:0$ t[1]:0$ t[2]:1$ %o A085697 t[n]:=t[n-1]+t[n-2]+t[n-3]$ %o A085697 makelist(t[n]^2,n,0,40); /* _Emanuele Munarini_, Mar 01 2011 */ %o A085697 (Magma) %o A085697 R<x>:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // _G. C. Greubel_, Nov 20 2021 %o A085697 (Sage) %o A085697 @CachedFunction %o A085697 def T(n): # A000073 %o A085697 if (n<2): return 0 %o A085697 elif (n==2): return 1 %o A085697 else: return T(n-1) +T(n-2) +T(n-3) %o A085697 def A085697(n): return T(n)^2 %o A085697 [A085697(n) for n in (0..40)] # _G. C. Greubel_, Nov 20 2021 %Y A085697 Cf. A000073, A057597, A099463, A107239, A113300. %K A085697 easy,nonn %O A085697 0,5 %A A085697 _Emanuele Munarini_, Jul 18 2003 %E A085697 Offset corrected to match A000073 by _N. J. A. Sloane_, Sep 12 2020 %E A085697 Name corrected to match corrected offset by _Michael A. Allen_, Jun 10 2021