A085707 Triangular array A065547 unsigned and transposed.
1, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 17, 17, 0, 1, 10, 55, 155, 155, 0, 1, 15, 135, 736, 2073, 2073, 0, 1, 21, 280, 2492, 13573, 38227, 38227, 0, 1, 28, 518, 6818, 60605, 330058, 929569, 929569, 0, 1, 36, 882, 16086, 211419, 1879038, 10233219, 28820619
Offset: 0
Examples
1; 1, 0; 1, 1, 0; 1, 3, 3, 0; 1, 6, 17, 17, 0; 1, 10, 55, 155, 155, 0; ...
References
- Louis Comtet, Analyse Combinatoire, PUF, 1970, Tome 2, pp. 98-99.
Links
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23. (Annotated scanned copy)
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
Crossrefs
Programs
-
Mathematica
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First // Abs // Reverse; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
Formula
Sum_{k >= 0} (-1/2)^k*T(n, k) = (1/2)^n.
Sum_{k >= 0} (-1/6)^k*T(n, k) = (4^(n+1)- 1)/3*(6^n).
Equals A000035 DELTA [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...], where DELTA is Deléham's operator defined in A084938.
T(n,n-1) = A110501(n), Genocchi numbers of first kind of even index. - Philippe Deléham, Feb 16 2007