cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085730 Euler's totient function applied to the sequence of prime powers.

This page as a plain text file.
%I A085730 #32 Apr 05 2025 09:11:18
%S A085730 1,1,2,2,4,6,4,6,10,12,8,16,18,22,20,18,28,30,16,36,40,42,46,42,52,58,
%T A085730 60,32,66,70,72,78,54,82,88,96,100,102,106,108,112,110,100,126,64,130,
%U A085730 136,138,148,150,156,162,166,156,172,178,180,190,192,196,198,210
%N A085730 Euler's totient function applied to the sequence of prime powers.
%H A085730 Reinhard Zumkeller, <a href="/A085730/b085730.txt">Table of n, a(n) for n = 1..10000</a>
%H A085730 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>.
%H A085730 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.
%F A085730 a(n) = A000010(A000961(n)).
%F A085730 a(p^e) = (p-1)*p^(e-1).
%F A085730 a(n) = (A025473(n)-1)*A025473(n)^(A025474(n)-1).
%t A085730 f[p_, e_] := (p-1)*p^(e-1); s[n_] := If[n == 1, 1, If[PrimePowerQ[n], f @@ (FactorInteger[n][[1]]), Nothing]]; Array[s, 220] (* _Amiram Eldar_, Apr 05 2025 *)
%o A085730 (Haskell)
%o A085730 a085730 1 = 1
%o A085730 a085730 n = (p - 1) * p ^ (e - 1)
%o A085730    where p =  a025473 n; e =  a025474 n
%o A085730 -- _Reinhard Zumkeller_, Feb 16 2012
%o A085730 (PARI) list(lim)=my(v=List(primes(primepi(lim)))); listput(v,1); for(e=2, log(lim+.5)\log(2),forprime(p=2,(lim+.5)^(1/e),listput(v, p^e))); apply(n->eulerphi(n),vecsort(Vec(v))) \\ _Charles R Greathouse IV_, Apr 30 2012
%Y A085730 Cf. A000010, A000961, A025473, A025474, A207193.
%K A085730 nonn
%O A085730 1,3
%A A085730 _Reinhard Zumkeller_, Jul 20 2003