This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085733 #43 Apr 03 2023 10:36:10 %S A085733 4,6,9,46,49,62,65,69,91,93,94,95,466,469,493,497,622,623,626,629,655, %T A085733 694,695,697,698,699,913,914,917,933,934,939,943,949,951,955,958,959, %U A085733 4661,4666,4667,4694,4699,4934,4939,4971,4979,6227,6233,6238 %N A085733 Right-truncatable semiprimes. %C A085733 Semiprimes in which repeatedly deleting the rightmost digit gives a semiprime at every step until a single-digit semiprime remains. %C A085733 The sequence is finite. According to Shyam Sunder Gupta the number 95861957783594714393831931415189937897 is the largest right-truncatable semiprime. %C A085733 The total number of right-truncatable semiprimes including the single-digit semiprimes 4, 6 and 9 is 56076. - _Shyam Sunder Gupta_, Jan 13 2008 %C A085733 No term ends in (or contains) 0 else it would be divisible by 2, 5, and some other factor. - _Michael S. Branicky_, Aug 04 2022 %D A085733 Shyam Sunder Gupta, Truncatable semi-primes, Mathematical Spectrum 39:3 (2007), pp. 109-112. %H A085733 Michael S. Branicky, <a href="/A085733/b085733.txt">Table of n, a(n) for n = 1..56076</a> (full sequence). %H A085733 I. O. Angell and H. J. Godwin, <a href="https://doi.org/10.1090/S0025-5718-1977-0427213-2">On truncatable primes</a>, Math. Comput. 31:137, 265-267, 1977. %H A085733 G. L. Honaker, Jr., <a href="https://t5k.org/curios/page.php?short=46613113151331733179">Prime Curios! 46613113151331733179</a> %H A085733 Shyam Sunder Gupta, <a href="https://t5k.org/curios/page.php?curio_id=6861">The largest right-truncatable semiprime.</a> Prime Curios. %H A085733 <a href="/index/Tri#tprime">Index entries for sequences related to truncatable primes</a> %o A085733 (Python) %o A085733 from sympy import factorint %o A085733 from itertools import islice %o A085733 def issemiprime(n): return sum(factorint(n).values()) == 2 %o A085733 def agen(): %o A085733 semis, digits = [4, 6, 9], "123456789" # can't end in 0 %o A085733 while len(semis) > 0: %o A085733 yield from semis %o A085733 cands = set(int(str(p)+d) for p in semis for d in digits) %o A085733 semis = sorted(c for c in cands if issemiprime(c)) %o A085733 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Aug 04 2022 %Y A085733 Cf. A001358, A213019, A086697. %K A085733 nonn,base,fini,full %O A085733 1,1 %A A085733 _G. L. Honaker, Jr._, Jul 20 2003 %E A085733 More terms from _Reinhard Zumkeller_, Jul 22 2003 %E A085733 More terms from _Hugo Pfoertner_, Jul 22 2003