This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085753 #29 Aug 02 2025 17:41:01 %S A085753 3,0,6,3,2,5,6,3,4,3,6,31,6,3,4,1,20,19,28,3,8,3,60,5,16,15,46,3,2,7, %T A085753 12,13,4,3,18,3,9,3,32,7,6,37,30,61,2,81,26,5,34,79,62,6,44,5,16,15, %U A085753 10,133,12,31,28,49,26,21,92,43,76,67,38,57,36,43,21,115,2,25,74,179,28,27,52,15 %N A085753 Least k such that n^n + k is a semiprime. %H A085753 Sean A. Irvine, <a href="/A085753/b085753.txt">Table of n, a(n) for n = 1..100</a> %H A085753 Dario Alejandro Alpern, <a href="https://www.alpertron.com.ar/ECM.HTM">Factorization using the Elliptic Curve Method</a> %t A085753 PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{k = 0}, While[ PrimeFactorExponentsAdded[n^n + k] != 2, k++ ]; k]; Table[ f[n], {n, 1, 40}] %t A085753 Table[Module[{k=0,c=n^n},While[PrimeOmega[c+k]!=2,k++];k],{n,82}] (* _Harvey P. Dale_, Aug 02 2025 *) %o A085753 (PARI) a(n) = my(k=0); while (bigomega(n^n+k) != 2, k++); k; \\ _Michel Marcus_, Jul 21 2020 %Y A085753 Cf. A001358 (semiprimes), A089542, A089543, A089544. %K A085753 nonn %O A085753 1,1 %A A085753 _Jason Earls_, Jul 21 2003 %E A085753 Edited and extended by _Robert G. Wilson v_, Aug 14 2003 %E A085753 Corrected and extended by _Ray Chandler_, Nov 22 2003 %E A085753 a(69)-a(82) from _Max Alekseyev_, Jun 13 2009 %E A085753 a(52) and a(73) corrected by _Sean A. Irvine_, Jul 20 2020