A085775 Numbers k such that (k / sum of digits of k) and (k+1 / sum of digits of k+1) are both prime.
152, 803, 1016, 1853, 3031, 3032, 3438, 7361, 7542, 7587, 8226, 8337, 10095, 10278, 10307, 11354, 11646, 13116, 13117, 13881, 17153, 21434, 21906, 23412, 26221, 28824, 30254, 31112, 32166, 34218, 35513, 38322, 40335, 41058, 44373, 45380
Offset: 1
Examples
152 is a term since 152/(1+5+2) = 19 and 153/(1+5+3) = 17 are both prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; Select[Range[50000], moranQ[#] && moranQ[#+1] &] (* Amiram Eldar, Apr 25 2020 *)
Extensions
Offset corrected by Amiram Eldar, Apr 25 2020