cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085801 Maximum number of nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 2, 5, 4, 7, 6, 7, 9, 11, 10, 13, 13, 13, 14, 17, 16, 19, 18, 19, 21, 23, 22, 25, 25, 25, 26, 29, 28, 31, 30, 31, 33, 35, 34, 37, 37, 37, 38, 41, 40, 43, 42, 43, 45, 47, 46, 49, 49, 49, 50, 53, 52, 55, 54, 55, 57, 59, 58, 61, 61, 61, 62, 65, 64, 67, 66
Offset: 1

Views

Author

Konrad Schlude, Jul 24 2003

Keywords

Comments

Independence number of the queens' graph on toroidal n X n board. - Andrey Zabolotskiy, Dec 11 2016

Examples

			Four non-attacking queens can be placed on a 6 X 6 toroidal board:
......
..Q...
....Q.
.Q....
...Q..
......
But five queens cannot. Hence a(6) = 4.
		

References

  • G. Polya: Über die 'Doppelt-Periodischen' Loesungen des n-Damen-Problems, in: W. Ahrens: Mathematische Unterhaltungen und Spiele, Teubner, Leipzig, 1918, 364-374. Reprinted in: G. Polya: Collected Works, Vol. V, 237-247.

Crossrefs

Programs

  • Mathematica
    (* Explicit formula, based on an article by Monsky: *)
    Table[n-1/6*(2*Cos[Pi*n/2]-3*Cos[Pi*n/3]+5*Cos[2*Pi*n/3]-Cos[Pi*n/6]-Cos[5*Pi*n/6]+3*Cos[Pi*n]+7),{n,1,100}] (* Vaclav Kotesovec, Dec 13 2010 *)
  • PARI
    a(n)=n-1/6*(2*cos(Pi*n/2)-3*cos(Pi*n/3)+5*cos(2*Pi*n/3)-cos(Pi*n/6)-cos(5*Pi*n/6)+3*cos(Pi*n)+7);
    vector(60,n,round(a(n))) \\ Joerg Arndt, Dec 13 2010

Formula

G.f.: (2*x^12 - x^11 + 2*x^10 + 2*x^9 + x^8 - x^7 + 3*x^6 - x^5 + 3*x^4 + x^3 + 1)/(x^13 - x^12 - x + 1) = (2*x^12 - x^11 + 2*x^10 + 2*x^9 + x^8 - x^7 + 3*x^6 - x^5 + 3*x^4 + x^3 + 1)/((x - 1)^2*(x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)). - Joerg Arndt, Dec 13 2010
From Andrey Zabolotskiy, Dec 11 2016: (Start)
a(n) = n if n = 1, 5, 7, 11 (mod 12);
a(n) = n-1 if n = 2, 10 (mod 12);
a(n) = n-2 otherwise.
(End)