A085852 Triangle T(n, k) read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, ...] DELTA [1, 0, 2, 0, 2, 0, 3, 0, 2, 0, 4, 0, 2, 0, ...] (A000005 interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 62, 26, 1, 0, 1, 57, 266, 258, 57, 1, 0, 1, 120, 991, 1792, 903, 120, 1, 0, 1, 247, 3405, 10363, 9483, 2829, 247, 1, 0, 1, 502, 11140, 53818, 80342, 42906, 8212, 502, 1, 0, 1, 1013, 35348, 260996
Offset: 0
Examples
Triangle begins: 1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 62, 26, 1, 0, 1, 57, 266, 258, 57, 1, 0, 1, 120, 991, 1792, 903, 120, 1, 0, 1, 247, 3405, 10363, 9483, 2829, 247, 1, 0, 1, 502, 11140, 53818, 80342, 42906, 8212, 502, 1, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Mathematica
m = 13; (* DELTA is defined in A084938 *) DELTA[LinearRecurrence[{0, 2, 0, -1}, {0, 1, 0, 2}, m], Table[ {DivisorSigma[0, n], 0}, {n, 1, m}] // Flatten, m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
Extensions
Incorrect comment removed by Philippe Deléham, Sep 25 2015