This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085903 #59 Aug 24 2024 18:21:44 %S A085903 1,1,7,9,31,49,127,225,511,961,2047,3969,8191,16129,32767,65025, %T A085903 131071,261121,524287,1046529,2097151,4190209,8388607,16769025, %U A085903 33554431,67092481,134217727,268402689,536870911,1073676289,2147483647 %N A085903 Expansion of (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)). %C A085903 Resultant of the polynomial x^n - 1 and the Chebyshev polynomial of the first kind T_2(x). %C A085903 This sequence is the case P1 = 1, P2 = 0, Q = -2 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Apr 27 2014 %H A085903 Vincenzo Librandi, <a href="/A085903/b085903.txt">Table of n, a(n) for n = 1..1000</a> %H A085903 H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277. %H A085903 H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume %H A085903 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-2,-4). %F A085903 a(2*n) = 2*4^n - 1, a(2*n + 1) = (2^n - 1)^2; interlaces A083420 with A060867 (squares of Mersenne numbers A000225). - _Creighton Dement_, May 19 2005 %F A085903 A107663(2*n) = a(2*n) = A083420(n). - _Creighton Dement_, May 19 2005 %F A085903 From _Peter Bala_, Apr 27 2014: (Start) %F A085903 a(n) = (sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n). %F A085903 a(n) = Product_{k = 1..n} ( 2 - exp(4*k*Pi*i/n) ). (End) %F A085903 E.g.f.: exp(-x) + exp(2*x) - 2*cosh(sqrt(2)*x). - _Ilya Gutkovskiy_, Jun 16 2016 %p A085903 seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # _Peter Bala_, Apr 27 2014 %t A085903 CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* _Robert G. Wilson v_, May 04 2013 *) %t A085903 LinearRecurrence[{1,4,-2,-4},{1,1,7,9},40] (* _Harvey P. Dale_, Jul 25 2016 *) %o A085903 (PARI) a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ _David Wasserman_, Feb 10 2005 %o A085903 (Magma) [Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // _Vincenzo Librandi_, Apr 28 2014 %o A085903 (Python) %o A085903 def A085903(n): return (1<<n)-1 if n&1 else ((1<<(n>>1))-1)**2 # _Chai Wah Wu_, Jun 19 2024 %Y A085903 Cf. A083420, A028400, A062510, A088037, A107663. %Y A085903 Cf. A060867. A100047. %K A085903 nonn,easy %O A085903 1,3 %A A085903 Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003 %E A085903 More terms from _David Wasserman_, Feb 10 2005 %E A085903 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 15 2007