A085934 Numbers k such that (digits of k sorted in ascending order) + (digital product of k) is a palindrome. Or, sortdigits(k) + digitproduct(k) is a palindrome.
1, 2, 3, 4, 10, 16, 20, 28, 30, 39, 40, 50, 60, 61, 70, 80, 82, 89, 90, 93, 98, 100, 101, 110, 127, 166, 172, 179, 188, 197, 200, 202, 217, 220, 236, 247, 263, 271, 274, 300, 303, 326, 330, 348, 359, 362, 366, 384, 395, 400, 404, 427, 438, 440, 445, 454, 455, 472
Offset: 1
Examples
82 is a term because the digits of 82 sorted in ascending order are 28, the digital product of 82 is 16, and 28 + 16 = 44, a palindrome.
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..4284 (all terms <= 10000000)
Programs
-
Mathematica
DeleteCases[ParallelTable[If[PalindromeQ[FromDigits[Sort[IntegerDigits[k]]]+Times@@IntegerDigits[k]],k,n],{k,1,10^7}],n] (* J.W.L. (Jan) Eerland, Nov 04 2024 *)