cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085956 Smallest prime p such that (2n)*p +1 and (p-1)/(2n) are prime, or 0 if no such prime exists.

Original entry on oeis.org

5, 13, 13, 17, 31, 61, 239, 0, 127, 41, 0, 73, 131, 0, 61, 1889, 0, 397, 419, 0, 211, 89, 0, 97, 101, 0, 163, 113, 0, 181, 2543, 0, 463, 2789, 211, 5689, 149, 0, 547, 881, 0, 1093, 173, 0, 271, 9293, 0, 673, 491, 0, 1123, 14249, 0, 10909, 3191, 0, 229, 1973, 0, 241
Offset: 1

Views

Author

Amarnath Murthy, Jul 16 2003

Keywords

Comments

Primes of the form 16*p + 1 == {1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91} (mod 96).
With rare exceptions, a(3n-1)=0. a(2)=13, a(5)=31 and a(35)=211, all of which are of the form 6n+1. This is true for those 6317 n's which have a solutions less than 10^6. I have no proof! - Robert G. Wilson v

Examples

			a(5) = 31 as (2*5)*31 + 1= 311 as well as (31-1)/10 = 3 are primes.
		

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[k < 10^12 && ( !PrimeQ[k] || !PrimeQ[2*n*k + 1] || !PrimeQ[(k - 1)/(2n)] ), k += 2n]; If[k >= 10^12, 0, k]]; Table[ f[n], {n, 1, 61}]

Extensions

Corrected by Labos Elemer, Jul 17 2003
Edited and extended by Robert G. Wilson v, Jul 18 2003