This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085971 #12 Aug 20 2024 13:19:50 %S A085971 2,3,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,28,29,30,31, %T A085971 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56, %U A085971 57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78 %N A085971 Union of primes and numbers that are not prime powers (A000040, A024619). %C A085971 Complement of A025475; %C A085971 A085972(n) = Max{k: a(k)<=n}; %C A085971 different from A007916 and A052485, as a(28)=36; %C A085971 A085818(a(n)) = A000040(n). %F A085971 a(n) = n + o(sqrt n). - _Charles R Greathouse IV_, Oct 19 2015 %t A085971 With[{nn=100},Union[Join[Prime[Range[PrimePi[nn]]],DeleteCases[Range[2,80], _?(PrimePowerQ[#]&)]]]] (* _Harvey P. Dale_, May 15 2019 *) %o A085971 (PARI) is(n)=isprimepower(n)<2 && n>1 \\ _Charles R Greathouse IV_, Oct 19 2015 %o A085971 (Python) %o A085971 from sympy import primepi, integer_nthroot %o A085971 def A085971(n): %o A085971 def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) %o A085971 kmin, kmax = 1,2 %o A085971 while f(kmax) >= kmax: %o A085971 kmax <<= 1 %o A085971 while True: %o A085971 kmid = kmax+kmin>>1 %o A085971 if f(kmid) < kmid: %o A085971 kmax = kmid %o A085971 else: %o A085971 kmin = kmid %o A085971 if kmax-kmin <= 1: %o A085971 break %o A085971 return kmax # _Chai Wah Wu_, Aug 20 2024 %K A085971 nonn,easy %O A085971 1,1 %A A085971 _Reinhard Zumkeller_, Jul 06 2003