cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085990 Number of topological types of polygons with 2n different sides.

This page as a plain text file.
%I A085990 #31 Feb 16 2025 08:32:50
%S A085990 0,3,60,2520,181440,19958400,3113510400,653837184000,177843714048000,
%T A085990 60822550204416000,25545471085854720000,12926008369442488320000,
%U A085990 7755605021665492992000000,5444434725209176080384000000,4420880996869850977271808000000
%N A085990 Number of topological types of polygons with 2n different sides.
%C A085990 a(n) equals (-1)^n times the coefficient of sqrt(1-x^2)*(arcsin x)^2 in int (arcsin x)^(2n-1) dx. - _John M. Campbell_, Jul 20 2011
%C A085990 For n >= 4, also the number of distinct adjacency matrices of the n-Moebius ladder. - _Eric W. Weisstein_, Mar 31 2017
%H A085990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AdjacencyMatrix.html">Adjacency Matrix</a>
%H A085990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>
%F A085990 a(n) = (n-1)*(2*n-1)*(2*n-3)!
%F A085990 a(n) = (2n-1)!/2 = A009445(n)/2, for n>1. - _Wesley Ivan Hurt_, Mar 31 2015
%e A085990 For example: if n=1 then no polygon exists with 2 different sides. If n=2 then the polygon has 4 different sides A, B, C, D. In this case 3 different types of such 4-angle exist: (A, B, C, D), (A, B, D, C), (A, C, B, D).
%p A085990 A085990:=n->`if`(n=1,0,(2*n-1)!/2): seq(A085990(n), n=1..20); # _Wesley Ivan Hurt_, Mar 31 2015
%t A085990 nn = 32; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Prepend[Select[Range[0, nn]! CoefficientList[Series[a, {x, 0, nn}], x], # > 0 &], 0] (* _Geoffrey Critzer_, Dec 10 2011 *)
%t A085990 Join[{0}, (2 Range[2, 20] - 1)!/2] (* _Wesley Ivan Hurt_, Mar 31 2015 *)
%o A085990 (PARI) a(n)=(2*n-1)!\2 \\ _Charles R Greathouse IV_, Dec 10 2011
%Y A085990 Cf. A009445.
%K A085990 nonn,easy
%O A085990 1,2
%A A085990 Sergey L. Dolmatov, Almir Dzhumaev (aalma(AT)mail.ru), Aug 18 2003