This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085998 #29 May 08 2021 08:37:31 %S A085998 0,0,0,0,5,0,8,3,0,4,7,2,1,5,0,1,9,7,8,8,9,2,3,5,2,5,9,1,5,0,9,2,3,4, %T A085998 1,1,1,8,9,6,2,2,3,8,0,6,8,9,8,8,1,6,3,9,3,9,9,7,9,5,2,1,6,0,2,5,6,1, %U A085998 3,0,2,8,9,2,1,4,9,7,3,7,8,7,3,7,8,4,6,1,2,7,6,5,4,7,9,2,4,2,9,1,1,2,4,8,1 %N A085998 Decimal expansion of the prime zeta modulo function at 9 for primes of the form 4k+3. %H A085998 Jean-François Alcover, <a href="/A085998/b085998.txt">Table of n, a(n) for n = 0..1006</a> %H A085998 P. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta Function Expansions of Classical Constants</a>, Unpublished manuscript. 1996. %H A085998 X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a>. %H A085998 R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of ... Prime Zeta Modulo functions</a>, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=3, s=9), page 21. %H A085998 <a href="/index/Z#zeta_function">OEIS index to entries related to the (prime) zeta function</a>. %F A085998 Zeta_R(9) = Sum_{primes p == 3 (mod 4)} 1/p^9 %F A085998 = (1/2)*Sum_{n>=0} mobius(2*n+1) *log(b((2*n+1)*9))/(2*n+1), %F A085998 where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function. %e A085998 0.000050830472150197889235259150923411189622380689881639399795... ~ 5.08...*10^-5 %t A085998 digits = 1003; %t A085998 nmax0 = 100;(* initial number of sum terms *) %t A085998 dnmax = 10;(* nmax increment *) %t A085998 dd = 10;(* precision excess *) %t A085998 Clear[PrimeZeta43]; %t A085998 f[s_] := (1 - 2^(-s))*(Zeta[s]/DirichletBeta[s]); %t A085998 PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd] &; %t A085998 PrimeZeta43[9, nmax = nmax0]; %t A085998 PrimeZeta43[9, nmax += dnmax]; %t A085998 While[Abs[PrimeZeta43[9, nmax] - PrimeZeta43[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax]; %t A085998 PrimeZeta43[9] = PrimeZeta43[9, nmax]; %t A085998 Join[{0, 0, 0, 0}, RealDigits[PrimeZeta43[9], 10, digits][[1]]] (* _Jean-François Alcover_, Jun 22 2011, updated May 07 2021 *) %o A085998 (PARI) A085998_upto(N=100)={localprec(N+3); digits((PrimeZeta43(9)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - _M. F. Hasler_, Apr 25 2021 %Y A085998 Cf. A085991 .. A085997 (Zeta_R(2..8)). %Y A085998 Cf. A086039 (analog for primes 4k+1), A085969 (PrimeZeta(9)), A002145 (primes 4k+3). %K A085998 cons,nonn %O A085998 0,5 %A A085998 Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003 %E A085998 Edited by _M. F. Hasler_, Apr 25 2021