cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086088 Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.

This page as a plain text file.
%I A086088 #65 Feb 16 2025 08:32:50
%S A086088 1,9,2,7,5,6,1,9,7,5,4,8,2,9,2,5,3,0,4,2,6,1,9,0,5,8,6,1,7,3,6,6,2,2,
%T A086088 1,6,8,6,9,8,5,5,4,2,5,5,1,6,3,3,8,4,7,2,7,1,4,6,6,4,7,0,3,8,0,0,9,6,
%U A086088 6,6,0,6,2,2,9,7,8,1,5,5,5,9,1,4,9,8,1,8,2,5,3,4,6,1,8,9,0,6,5,3,2,5
%N A086088 Decimal expansion of the limit of the ratio of consecutive terms in the tetranacci sequence A000078.
%C A086088 The tetranacci constant corresponds to the Golden Section in a quadripartite division 1 = u_1 + u_2 + u_3 + u_4 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 = c, c is the tetranacci constant. - _Seppo Mustonen_, Apr 19 2005
%C A086088 The other 3 polynomial roots of 1+x+x^2+x^3-x^4 are -0.77480411321543385... and the complex-conjugated pair -0.07637893113374572508475 +- i * 0.814703647170386526841... - _R. J. Mathar_, Oct 25 2008
%C A086088 The continued fraction expansion starts 1, 1, 12, 1, 4, 7, 1, 21, 1, 2, 1, 4, 6, 1, 10, 1, 2, 2, 1, 7, 1, 1,... - _R. J. Mathar_, Mar 09 2012
%C A086088 For n>=4, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - _Vladimir Shevelev_, Mar 21 2014
%C A086088 Note that we have: c + c^(-4) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - _Bernard Schott_, May 09 2022
%D A086088 Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
%H A086088 Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, <a href="https://doi.org/10.7546/nntdm.2020.26.1.179-190">On the Generalized Fibonacci-circulant-Hurwitz numbers</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.
%H A086088 O. Deveci, Y. Akuzum, E. Karaduman, and O. Erdag, <a href="http://dx.doi.org/10.5539/jmr.v7n2p34">The Cyclic Groups via Bezout Matrices</a>, Journal of Mathematics Research, Vol. 7, No. 2, 2015, pp. 34-41.
%H A086088 Gültekin, İnci; Deveci, Ömür, <a href="https://doi.org/10.1515/math-2016-0100">On the arrowhead-Fibonacci numbers</a>. Open Math. 14, 1104-1113 (2016).
%H A086088 S. Litsyn and Vladimir Shevelev, <a href="http://dx.doi.org/10.1142/S1793042105000339">Irrational Factors Satisfying the Little Fermat Theorem</a>, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
%H A086088 Vladimir Shevelev, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-March/012750.html">A property of n-bonacci constant</a>, Seqfan (Mar 23 2014)
%H A086088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetranacciNumber.html">Tetranacci Number</a>
%H A086088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiskCoveringProblem.html">Disk Covering Problem</a>
%H A086088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetranacciConstant.html">Tetranacci Constant</a>
%H A086088 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>
%H A086088 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>
%F A086088 Equals 1/4 + sqrt(11/48 - s/72 + 7/s) + sqrt(11/24 + s/72 - 7/s + 1 / sqrt(704/507 - 128 * s/1521 + 7168 / (169 * s))) where s = (sqrt(177304464) + 7020)^(1/3). - _Michal Paulovic_, Oct 08 2022
%e A086088 1.927561975...
%t A086088 RealDigits[Root[ -1-#1-#1^2-#1^3+#1^4&, 2], 10, 110][[1]]
%o A086088 (PARI) real(polroots(1+x+x^2+x^3-x^4)[2]) \\ _Charles R Greathouse IV_, Jul 19 2012
%o A086088 (PARI) polrootsreal(1+x+x^2+x^3-x^4)[2] \\ _Charles R Greathouse IV_, Apr 14 2014
%Y A086088 Cf. A000078.
%Y A086088 k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), this sequence (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).
%K A086088 nonn,cons
%O A086088 1,2
%A A086088 _Eric W. Weisstein_, Jul 08 2003