This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086089 #39 Sep 28 2022 14:08:10 %S A086089 8,2,6,9,9,3,3,4,3,1,3,2,6,8,8,0,7,4,2,6,6,9,8,9,7,4,7,4,6,9,4,5,4,1, %T A086089 6,2,0,9,6,0,7,9,7,2,0,5,4,9,9,6,0,9,7,9,1,9,9,0,4,9,0,3,0,4,3,6,5,4, %U A086089 5,4,5,5,2,0,3,9,0,4,6,9,2,2,6,0,5,7,0,0,4,3,2,3,4,7,5,6,3,3,3,8,1,1 %N A086089 Decimal expansion of 3*sqrt(3)/(2*Pi). %C A086089 Limiting ratio of areas in the disk-covering problem. %C A086089 From _Daniel Forgues_, May 26 2010: (Start) %C A086089 Consider: A060544 (Centered 9-gonal numbers), starting with a(1)=1, P_c(9, n), n >= 1. Every third triangular number, starting with a(1)=1, P(3, 3n-2), n >= 1. Then: %C A086089 1/(Sum_{n=0..infinity} 1/binomial(3n+2,2)) = 1/(Sum_{n=1..infinity} 1/binomial(3n-1,2)) = 1/(Sum_{n=1..infinity} 1/P_c(9,n)) = 1/(Sum_{n=1..infinity} 1/P(3,3n-2)) = 1/(Sum_{n=1..infinity} 1/A060544(n)) = this constant. (End) %C A086089 The area of a regular hexagon circumscribed in a unit-area circle. - _Amiram Eldar_, Nov 05 2020 %D A086089 Steven R. Finch, Mathematical Constants, Cambridge, 2003, Sections 5.9 p. 325 and 8.2 p. 486. %D A086089 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196. %H A086089 Veikko Nevanlinna, <a href="https://www.acadsci.fi/mathematica/1973/year1973.html">On constants connected with the prime number theorem for arithmetic progressions</a>, Annales Academiae Scientiarum Fennicae Ser. A. I., No. 539 (1973). %H A086089 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A086089 Equals Product_{n>=1} (1 - 1/(3n)^2). - _Bruno Berselli_, Apr 02 2013 %F A086089 Equals sinc(Pi/3). - _Peter Luschny_, Oct 04 2019 %F A086089 Equals Product{k>=1} cos(Pi/(3*2^k)). - _Amiram Eldar_, Aug 20 2020 %F A086089 Equals Sum_{k>=0} mu(3*k+1)/(3*k+1) (Nevanlinna, 1973). - _Amiram Eldar_, Dec 21 2020 %e A086089 0.8269933431326880742669897474694541620960797205499609791990... %t A086089 RealDigits[3 Sqrt[3]/(2 Pi), 10, 110][[1]] (* or, from the third comment: *) RealDigits[N[Product[1 - 1/(3 n)^2, {n, 1, Infinity}], 110]][[1]] (* _Bruno Berselli_, Apr 02 2013 *) %o A086089 (PARI) 3*sqrt(3)/(2*Pi) \\ _Michel Marcus_, Nov 05 2020 %Y A086089 Cf. A008683, A060544. %K A086089 nonn,cons,easy %O A086089 0,1 %A A086089 _Eric W. Weisstein_, Jul 08 2003