cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086105 Adding, multiplying and exponentiating cycle of the previous two terms similar to A039941.

This page as a plain text file.
%I A086105 #6 Oct 04 2023 22:37:35
%S A086105 0,1,1,1,1,2,2,4,6,24,4738381338321616896,4738381338321616920,
%T A086105 22452257707354557353808363243511480320
%N A086105 Adding, multiplying and exponentiating cycle of the previous two terms similar to A039941.
%F A086105 a(1)=0, a(2)=1, a(n): if n mod 3 is 0: a(n)=a(n-2) + a(n-1), if n mod 3 is 1: a(n)=a(n-2) * a(n-1), if n mod 3 is 2: a(n)=a(n-2)^a(n-1).
%e A086105 a(11) = a(9)^a(10)=6^24 because 11 mod 3 is 2.
%t A086105 nxt[{n_,a_,b_}]:={n+1,b,Which[Mod[n+1,3]==0,a+b,Mod[n+1,3]==1,a*b,True,a^b]}; NestList[ nxt,{2,0,1},12][[;;,2]] (* _Harvey P. Dale_, Oct 04 2023 *)
%Y A086105 Cf. A039941.
%K A086105 easy,nonn
%O A086105 1,6
%A A086105 Anthony Peterson (civ2buf(AT)ricochet.com), Jul 09 2003
%E A086105 The next 2 terms are (6^24)^((6^24)*(6^24+24)) and (6^24)^((6^24) * (6^24 + 24)) + (6^24) * (6^24 + 24).