cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086137 Number of primes between p and p+8 if p is prime, i.e., number of primes between 8+A023202(n) and A023202(n).

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Labos Elemer, Jul 29 2003

Keywords

Examples

			a(n)=0,1,2 correspond to {p,p+8} prime-pairs either consecutive or pairs with various d-patterns as follows:
a(n)=0 to 89[8]97; a(n)=1 for 29[2,6]37, 53[6,2];
a(n)=2 for 101[2,4,2]109 and once to 3[2,2,4]11.
		

Crossrefs

Programs

  • Mathematica
    cp[x_,y_] := Count[Table[PrimeQ[i],{i,x,y}],True] Do[s=Prime[n]; s1=Prime[n+1]; If[PrimeQ[s+d],k=k+1; Print[cp[s+1,s+d-1]]],{n,1,1000}]; k