A086159 Number of partitions of n into the first three triangular numbers, 1, 3 and 6.
1, 1, 1, 2, 2, 2, 4, 4, 4, 6, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 16, 20, 20, 20, 25, 25, 25, 30, 30, 30, 36, 36, 36, 42, 42, 42, 49, 49, 49, 56, 56, 56, 64, 64, 64, 72, 72, 72, 81, 81, 81, 90, 90, 90, 100, 100, 100, 110, 110, 110, 121, 121, 121, 132, 132, 132
Offset: 0
Keywords
Links
- Jan Snellman and Michael Paulsen, Enumeration of Concave Integer Partitions, J. Integer Seq., Vol. 7 (2004), Article 04.1.3.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,1,-1,0,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 1, -1, 0, 1, -1, 0, -1, 1}, {1, 1, 1, 2, 2, 2, 4, 4, 4, 6}, 100] (* Amiram Eldar, Feb 14 2023 *)
Formula
G.f.: 1/((1-x)*(1-x^3)*(1-x^6)).
Sum_{n>=0} 1/a(n) = Pi^2/2 + 3. - Amiram Eldar, Feb 14 2023