cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086200 Number of unrooted steric quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n +2) with a bicentroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 3, 15, 66, 406, 2775, 19900, 152076, 1206681, 9841266, 82336528, 702993756, 6105180250, 53822344278, 480681790786, 4342078862605, 39621836138886, 364831810979041, 3386667673687950, 31669036266203766
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010373 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = A086194(n) + a(n/2), for odd n A000628(n) = A086194(n), since every tree has either a centroid or a bicentroid but not both.

Formula

G.f.: replace each term x in g.f. for A000625 by x(x+1)/2. Interpretation: ways to pick 2 specific radicals (order not important) from all n carbon radicals is number of 2n carbon bicentered alkanes (join the two radicals with an edge).