This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086229 #24 Sep 08 2022 08:45:11 %S A086229 1,1,3,20,280,8064,473088,56229888,13495173120,6525665935360, %T A086229 6348167821918208,12410090985684467712,48713743815806763925504, %U A086229 383714412826047125074739200,6062249191894029093752222515200 %N A086229 Determinant of n X n matrix M(i,j) = binomial(2i-1,j), (i,j) ranging from 1 to n. %H A086229 G. C. Greubel, <a href="/A086229/b086229.txt">Table of n, a(n) for n = 0..80</a> %F A086229 a(n) = 2^(n*(n-3)/2)*binomial(2*n, n). %F A086229 a(n) = 2^C(n,2)*Hypergeometric2F1((1-n)/2,-n/2;1;1). %t A086229 f[n_] := 2^(n (n - 3)/2) Binomial[2 n, n]; (* Or *) %t A086229 f[n_] := 2^(n (n - 1)/2) Hypergeometric2F1[(1 - n)/2, -n/2, 1, 1]; Array[f, 15, 0] (* _Robert G. Wilson v_ *) %o A086229 (PARI) a(n) = matdet(matrix(n, n, i, j, binomial(2*i-1, j))); \\ _Michel Marcus_, Dec 12 2014 %o A086229 (PARI) for(n=0, 30, print1(2^(n*(n-3)/2)*binomial(2*n, n), ", ")) \\ _G. C. Greubel_, Jan 25 2018 %o A086229 (Magma) [2^(n*(n-3)/2)*Binomial(2*n, n): n in [0..30]]; // _G. C. Greubel_, Jan 25 2018 %K A086229 nonn %O A086229 0,3 %A A086229 _Benoit Cloitre_, Aug 28 2003