cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086244 Primes such that a sum of any two adjacent digits is prime; first and last digits are considered adjacent.

This page as a plain text file.
%I A086244 #18 Oct 27 2023 20:43:29
%S A086244 11,23,29,41,43,47,61,67,83,89,211,2029,2111,2129,2141,2143,2161,2341,
%T A086244 2383,2389,2503,2521,4111,4129,4349,4703,4943,6121,6521,6761,8329,
%U A086244 8389,8923,8929,11161,11411,12161,12941,14321,14341,14741,16111,16141,16561,16741,20323,20341,20389,20521
%N A086244 Primes such that a sum of any two adjacent digits is prime; first and last digits are considered adjacent.
%C A086244 Each (2- or more-digit) term must begin with one of the even digits 2,4,6,8 or else must begin and end with the digit 1. All repunit primes (A004022) are terms as the sums are always 2.
%H A086244 Alois P. Heinz, <a href="/A086244/b086244.txt">Table of n, a(n) for n = 1..10000</a> (first 623 terms from Zak Seidov)
%e A086244 2029 is a term because it is a prime and 2+0, 0+2, 2+9, 9+2 are all primes.
%t A086244 p=10; Reap[Do[Label[ne]; p=NextPrime[p]; id=IntegerDigits[p];
%t A086244    id1=Append[id,id[[1]]];id2=Prepend[id,id[[-1]]];
%t A086244    If[{True}==Union[PrimeQ[id1+id2]],Sow[p]], {2000}]][[2, 1]]
%t A086244 (* _Zak Seidov_, May 10 2016 *)
%t A086244 tadpQ[n_]:=Module[{idn=IntegerDigits[n]},AllTrue[ Join[{idn[[1]]+ idn[[-1]]}, Total/@Partition[idn,2,1]],PrimeQ]]; Select[Prime[Range[ 2500]],tadpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jun 08 2019 *)
%K A086244 easy,base,nonn
%O A086244 1,1
%A A086244 _Zak Seidov_, Jul 13 2003
%E A086244 Corrected and extended by _Rick L. Shepherd_, Feb 11 2004