This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086271 #47 Aug 31 2023 16:13:53 %S A086271 1,1,3,1,4,6,1,5,9,10,1,6,12,16,15,1,7,15,22,25,21,1,8,18,28,35,36,28, %T A086271 1,9,21,34,45,51,49,36,1,10,24,40,55,66,70,64,45,1,11,27,46,65,81,91, %U A086271 92,81,55,1,12,30,52,75,96,112,120,117,100,66,1,13,33,58,85,111,133,148,153,145,121,78 %N A086271 Rectangular array T(n,k) of polygonal numbers, by descending antidiagonals. %C A086271 The transpose of the array in A086270; diagonal sums 1, 4, 11, 25, 50, ... are the numbers A006522(n) for n >= 3. %H A086271 G. C. Greubel, <a href="/A086271/b086271.txt">Table of n, a(n) for the first 50 diagonals, flattened</a> %H A086271 Clark Kimberling and John E. Brown, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html">Partial Complements and Transposable Dispersions</a>, J. Integer Seqs., Vol. 7, 2004. %F A086271 T(n, k) = k*C(n,2) + n. %F A086271 From _Stefano Spezia_, Sep 02 2022: (Start) %F A086271 G.f.: x*y*(1 - y + x*y)/((1 - x)^3*(1 - y)^2). %F A086271 G.f. of n-th row: n*(1 + n - 2*y)*y/(2*(1 - y)^2). (End) %e A086271 Columns 1,2,3 are the triangular, square and pentagonal numbers. %e A086271 Northwest corner: %e A086271 k=1 k=2 k=3 k=4 k=5 %e A086271 n=1: 1 1 1 1 1 ... %e A086271 n=2: 3 4 5 6 7 ... %e A086271 n=3: 6 9 12 15 18 ... %e A086271 n=4: 10 16 22 28 34 ... %e A086271 n=5: 15 25 35 45 55 ... %e A086271 ... %t A086271 T[n_, k_] := PolygonalNumber[k+2, n]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Sep 04 2016 *) %Y A086271 Cf. A006522, A086270, A086272, A086273. %Y A086271 Main diagonal gives A006000(n-1). %K A086271 nonn,easy,tabl %O A086271 1,3 %A A086271 _Clark Kimberling_, Jul 14 2003