A086273 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.
1, 1, 3, 1, 4, 7, 1, 5, 10, 13, 1, 6, 13, 19, 21, 1, 7, 16, 25, 31, 31, 1, 8, 19, 31, 41, 46, 43, 1, 9, 22, 37, 51, 61, 64, 57, 1, 10, 25, 43, 61, 76, 85, 85, 73, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91, 1, 12, 31, 55, 81, 106, 127, 141, 145, 136, 111, 1, 13, 34, 61, 91, 121, 148
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 1 1 1 3 4 5 6 7 8 9 10 11 12 A000027 7 10 13 16 19 22 25 28 31 34 A112414, A016777 13 19 25 31 37 43 49 55 61 67 A016921 21 31 41 51 61 71 81 91 101 111 A017281 31 46 61 76 91 106 121 136 151 166 43 64 85 106 127 148 169 190 211 232 57 85 113 141 169 197 225 253 281 309 73 109 145 181 217 253 289 325 361 397 91 136 181 226 271 316 361 406 451 496 111 166 221 276 331 386 441 496 551 606 133 199 265 331 397 463 529 595 661 727 157 235 313 391 469 547 625 703 781 859 183 274 365 456 547 638 729 820 911 1002 211 316 421 526 631 736 841 946 1051 1156 241 361 481 601 721 841 961 1081 1201 1321
Links
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7 (2004) # 04.1.6.
Programs
-
Maple
A086273 := proc(n,k) (k+1)*n*(n-1)/2+1 ; end proc: # R. J. Mathar, Jun 05 2011
Formula
T(n, k)=(k+1)*binomial(n, 2)+1.
Comments