cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086275 Number of distinct Gaussian primes in the factorization of n.

This page as a plain text file.
%I A086275 #30 Feb 16 2025 08:32:50
%S A086275 0,1,1,1,2,2,1,1,1,3,1,2,2,2,3,1,2,2,1,3,2,2,1,2,2,3,1,2,2,4,1,1,2,3,
%T A086275 3,2,2,2,3,3,2,3,1,2,3,2,1,2,1,3,3,3,2,2,3,2,2,3,1,4,2,2,2,1,4,3,1,3,
%U A086275 2,4,1,2,2,3,3,2,2,4,1,3,1,3,1,3,4,2,3,2,2,4,3,2,2,2,3,2,2,2,2,3
%N A086275 Number of distinct Gaussian primes in the factorization of n.
%C A086275 As shown in the formula, a(n) depends on the number of distinct primes of the forms 4*k+1 (A005089) and 4*k-1 (A005091) and whether n is divisible by 2 (A059841).
%C A086275 Note that associated divisors are counted only once. - _Jianing Song_, Aug 30 2018
%H A086275 T. D. Noe, <a href="/A086275/b086275.txt">Table of n, a(n) for n = 1..10000</a>
%H A086275 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GaussianPrime.html">Gaussian Prime</a>.
%F A086275 a(n) = A059841(n) + 2*A005089(n) + A005091(n).
%F A086275 Additive with a(p^e) = 2 if p = 1 (mod 4), 1 otherwise. - _Franklin T. Adams-Watters_, Oct 18 2006
%e A086275 a(1006655265000) = a(2^3*3^2*5^4*7^5*11^3) = 1 + 2*1 + 3 = 6 because n is divisible by 2, has 1 prime factor of the form 4*k+1 and 3 primes of the form 4*k+3. Over the Gaussian integers, 1006655265000 is factored as i*(1 + i)^6*(2 + i)^4*(2 - i)^4*3^2*7^5*11^3, the 6 distinct Gaussian factors are 1 + i, 2 + i, 2 - i, 3, 7 and 11.
%t A086275 Join[{0}, Table[f=FactorInteger[n, GaussianIntegers->True]; cnt=Length[f]; If[MemberQ[{-1, I, -I}, f[[1, 1]]], cnt-- ]; cnt, {n, 2, 100}]]
%t A086275 a[n_]:=If[n==2,1,PrimeNu[n, GaussianIntegers -> True]]; Array[a,100] (* _Stefano Spezia_, Sep 29 2024 *)
%o A086275 (PARI) a(n)=my(f=factor(n)[,1]); sum(i=1,#f,if(f[i]%4==1,2,1)) \\ _Charles R Greathouse IV_, Sep 14 2015
%Y A086275 Cf. A005089, A005091, A059841.
%Y A086275 Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), this sequence ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
%Y A086275 Equivalent in the ring of Eisenstein integers: A319443.
%K A086275 easy,nonn
%O A086275 1,5
%A A086275 _T. D. Noe_, Jul 14 2003