cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.

This page as a plain text file.
%I A086308 #33 Feb 16 2025 08:32:50
%S A086308 5,3,4,9,4,9,6,0,6,1,4,2,3,0,7,0,1,4,5,5,0,3,7,9,7,1,1,0,5,2,0,6,8,3,
%T A086308 9,8,1,4,3,1,1,6,5,1,4,0,5,6,9,9,0,0,9,3,9,7,7,0,7,6,8,1,0,2,3,7,5,2,
%U A086308 3,2,1,7,8,8,0,6,4,0,6,7,2,3,9,7,8,3,2,6,2,2,4,1,8,5,9,1,1,0,4,4,4,6,6,9,3,7
%N A086308 Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.
%C A086308 A000055(n) ~ 0.5349496061 * alpha^n * n^(-5/2), where alpha = 2.95576528565199497... (see A051491). - _Vaclav Kotesovec_, Jan 04 2013
%D A086308 Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.
%H A086308 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Tree.html">Tree</a>
%e A086308 0.53494960614230701455037971105206839814311651405699...
%t A086308 digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* _Jean-François Alcover_, Sep 24 2014 *)
%Y A086308 Cf. A000055, A000081, A051491, A187770.
%K A086308 nonn,cons
%O A086308 0,1
%A A086308 _Eric W. Weisstein_, Jul 15 2003
%E A086308 Corrected and extended by _Vaclav Kotesovec_, Jan 04 2013
%E A086308 More terms from _Vaclav Kotesovec_, Jun 20 2013 and Dec 26 2020