cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086318 Decimal expansion of asymptotic constant eta for counts of weakly binary trees.

This page as a plain text file.
%I A086318 #19 Feb 16 2025 08:32:50
%S A086318 7,9,1,6,0,3,1,8,3,5,7,7,5,1,1,8,0,7,8,2,3,6,2,8,4,5,5,7,2,3,2,6,8,2,
%T A086318 2,4,0,7,1,7,4,2,4,1,8,0,9,0,7,8,9,4,6,7,3,1,2,3,0,7,8,3,0,9,9,2,2,9,
%U A086318 0,4,4,1,5,0,3,8,9,3,2,9,2,5,5,4,4,6,6,7,9,0,8,6,8,4,0,4,6,3,0,3,8,3
%N A086318 Decimal expansion of asymptotic constant eta for counts of weakly binary trees.
%D A086318 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 297.
%H A086318 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WeaklyBinaryTree.html">Weakly binary tree</a>.
%F A086318 Equals lim_{n->oo} A001190(n)*n^(3/2)/A086317^(n-1). - _Vaclav Kotesovec_, Apr 19 2016
%e A086318 0.791603183577511807823628455723268224071742418090789...
%t A086318 digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; eta[n_Integer] := eta[n] = 1/2 * Sqrt[c[n]^2^(-n)/Pi] * Sqrt[3 + Sum[1/Product[c[j], {j, 1, k}], {k, 1, n}]]; eta[5]; eta[n = 10]; While[RealDigits[eta[n], 10, digits] != RealDigits[eta[n - 5], 10, digits], n = n + 5]; RealDigits[eta[n], 10, digits] // First (* _Jean-François Alcover_, May 27 2014 *)
%Y A086318 Cf. A001190, A086317.
%K A086318 nonn,cons
%O A086318 0,1
%A A086318 _Eric W. Weisstein_, Jul 15 2003