This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086329 #21 Jun 22 2022 02:52:49 %S A086329 1,0,1,0,1,1,0,1,4,1,0,1,9,11,1,0,1,16,48,26,1,0,1,25,140,202,57,1,0, %T A086329 1,36,325,916,747,120,1,0,1,49,651,3045,5071,2559,247,1,0,1,64,1176, %U A086329 8260,23480,25300,8362,502,1,0,1,81,1968,19404,84456,159736,117962,26520,1013,1 %N A086329 Triangle T(n,k) read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] where DELTA is the operator defined in A084938. %C A086329 See A087903 for another version (transposed). - _Philippe Deléham_, Jun 13 2004 %H A086329 G. C. Greubel, <a href="/A086329/b086329.txt">Rows n = 0..50 of the triangle, flattened</a> %F A086329 Sum_{k=0..n} T(n, k) = A086211(n, 0). %F A086329 T(n, 1) = 1, n > 0. %F A086329 T(n, 2) = (n-1)^2, n > 0. %F A086329 T(k+1, k) = 2^(k+1) - k - 2 = A000295(k+1). %F A086329 Sum_{k=0..n} T(n, k) = A074664(n+1). - _Philippe Deléham_, Jun 13 2004 %F A086329 Sum_{k=0..n} T(n,k)*2^k = A171151(n). - _Philippe Deléham_, Dec 05 2009 %F A086329 T(n, k) = A087903(n, n-k+1). - _G. C. Greubel_, Jun 21 2022 %e A086329 Triangle begins: %e A086329 1; %e A086329 0, 1; %e A086329 0, 1, 1; %e A086329 0, 1, 4, 1; %e A086329 0, 1, 9, 11, 1; %e A086329 0, 1, 16, 48, 26, 1; %e A086329 0, 1, 25, 140, 202, 57, 1; %e A086329 0, 1, 36, 325, 916, 747, 120, 1; %e A086329 0, 1, 49, 651, 3045, 5071, 2559, 247, 1; %e A086329 0, 1, 64, 1176, 8260, 23480, 25300, 8362, 502, 1; ... %t A086329 T[n_, k_]:= T[n, k]= If[n==0, 1, StirlingS2[n, k] + Sum[(k-m-1)*T[n-j-1, k- m]*StirlingS2[j, m], {m,0,k-1}, {j,0,n-2}]]; %t A086329 A086329[n_, k_]:= T[n,n-k+1]; %t A086329 Table[A086329[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 21 2022 *) %o A086329 (SageMath) %o A086329 @CachedFunction %o A086329 def T(n,k): # T=A087903 %o A086329 if (n==0): return 1 %o A086329 else: return stirling_number2(n, k) + sum( sum( (k-m-1)*T(n-j-1, k-m)*stirling_number2(j, m) for m in (0..k-1) ) for j in (0..n-2) ) %o A086329 def A086329(n,k): return T(n, n-k+1) %o A086329 flatten([[A086329(n, k) for k in (0..n)] for n in (0..14)]) # _G. C. Greubel_, Jun 21 2022 %Y A086329 Cf. A000290, A000295, A074664, A084938, A086211, A171151. %K A086329 easy,nonn,tabl %O A086329 0,9 %A A086329 _Philippe Deléham_, Aug 30 2003, Jun 12 2007