cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086342 Smallest number of 1's in binary expansion of any positive multiple of n.

This page as a plain text file.
%I A086342 #31 Dec 19 2024 12:19:24
%S A086342 0,1,1,2,1,2,2,3,1,2,2,2,2,2,3,4,1,2,2,2,2,3,2,3,2,2,2,2,3,2,4,5,1,2,
%T A086342 2,3,2,2,2,3,2,2,3,2,2,4,3,3,2,3,2,4,2,2,2,3,3,2,2,2,4,2,5,6,1,2,2,2,
%U A086342 2,3,3,3,2,3,2,4,2,3,3,3,2,2,2,2,3,4,2,3,2,4,4,3,3,5,3,3,2,2,3,2,2,2,4,3,2
%N A086342 Smallest number of 1's in binary expansion of any positive multiple of n.
%C A086342 If n is a power of 2 then a(n)=1. All other positive n have a(n)>1. a(n)=2 precisely in cases where some multiple of n is a factor of 2^q+1 for some q.
%H A086342 T. D. Noe, <a href="/A086342/b086342.txt">Table of n, a(n) for n = 0..10000</a>
%H A086342 Trevor Clokie et al., <a href="https://arxiv.org/abs/2002.02731">Computational Aspects of Sturdy and Flimsy Numbers</a>, arxiv preprint arXiv:2002.02731 [cs.DS], February 7 2020.
%H A086342 Eugen J. Ionascu, Florian Luca, and Thomas Merino, <a href="https://arxiv.org/abs/2412.10839">On the average value of the minimal Hamming multiple</a>, arXiv:2412.10839 [math.NT], 2024. See pp. 4, 17.
%F A086342 a(2^k-1) = k. - _Thomas Dybdahl Ahle_, May 01 2013
%e A086342 a(n)=2 for n=53, 59, 61, 67, 81, 97 and 101 because n divides 2^k+1 for k=26, 29, 30, 33, 27, 24 and 50, respectively. - _T. D. Noe_, Jul 22 2008
%o A086342 (PARI) a(n)=if(!n, return(0)); n>>=valuation(n,2); my(o=znorder(Mod(2, n)), v1=Set(powers(Mod(2, n), o)), v=v1, s=1); while(!setsearch(v, Mod(0, n)), v=setbinop((x, y)->x+y, v, v1); s++); s \\ _Charles R Greathouse IV_, Dec 07 2016
%Y A086342 Cf. A005360 (flimsy numbers), A125121 (sturdy numbers), A143069 (least multiple).
%K A086342 base,nonn
%O A086342 0,4
%A A086342 _Sean A. Irvine_, Sep 02 2003
%E A086342 More terms from _Robert G. Wilson v_, Feb 21 2005
%E A086342 Corrected by _T. D. Noe_, Jul 22 2008
%E A086342 An incorrect Mathematica program was deleted Aug 01 2008