cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086354 Fixed point if (nonzero-digit product)-function at initial value 2^n is iterated.

Original entry on oeis.org

2, 4, 8, 6, 6, 8, 6, 6, 1, 8, 8, 2, 6, 2, 2, 4, 8, 2, 1, 6, 2, 2, 6, 8, 2, 8, 2, 8, 2, 2, 8, 6, 6, 2, 2, 6, 2, 2, 6, 8, 8, 6, 3, 4, 2, 2, 6, 6, 2, 8, 6, 2, 2, 9, 8, 6, 6, 5, 8, 2, 8, 8, 2, 6, 2, 8, 8, 8, 5, 8, 8, 8, 2, 8, 6, 4, 8, 6, 2, 7, 1, 8, 8, 4, 2, 8, 8
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=20, 2^20=1048576, iteration list={1048576,6720,84,32,6}, so a(20)=6.
		

Crossrefs

Programs

  • Maple
    A051801 := proc(n) local d,j: d:=convert(n,base,10): return mul(`if`(d[j]=0,1,d[j]), j=1..nops(d)): end: A086354 := proc(n) local m: m:=2^n: while(length(m)>1)do m:=A051801(m): od: return m: end: seq(A086354(n),n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[prd, 2^w], {w, 1, 128}]

Formula

a(n) = A051802(2^n) = fixed point of A051801(2^n).