cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086397 Numerators of the rational convergents to sqrt(2) if both numerators and denominators are primes.

This page as a plain text file.
%I A086397 #28 Apr 09 2023 02:16:59
%S A086397 3,7,41,63018038201,19175002942688032928599
%N A086397 Numerators of the rational convergents to sqrt(2) if both numerators and denominators are primes.
%C A086397 Next term, if it exists, is bigger than 489 digits (the 1279th convergent to sqrt(2)). - _Joshua Zucker_, May 08 2006
%C A086397 Are the terms >= 7 the primes in A183064? Is this a subsequence of A088165? - _R. J. Mathar_, Aug 16 2019
%C A086397 Yes, the terms >= 7 are the primes in A183064 and are a subsequence of A088165.  a(1)=3 is from the numerator of 3/2, but no other convergents > sqrt(2) can appear in this sequence because they all have even denominator.  All terms >= 7 are lower principal convergents from A002315/A088165/A183064 - _Martin Fuller_, Apr 08 2023
%H A086397 Andrej Dujella, Mirela Jukić Bokun, and Ivan Soldo, <a href="https://arxiv.org/abs/1706.01959">A Pellian equation with primes and applications to D(-1)-quadruples</a>, arXiv:1706.01959 [math.NT], 2017.
%t A086397 For[n = 2, n < 1500, n++, a := Join[{1}, Table[2, {i, 2, n}]]; If[PrimeQ[Denominator[FromContinuedFraction[a]]], If[PrimeQ[Numerator[FromContinuedFraction[a]]], Print[Numerator[FromContinuedFraction[a]]]]]] (* _Stefan Steinerberger_, May 09 2006 *)
%o A086397 (PARI) cfracnumdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer)&&ispseudoprime(denom), print1(numer",");numer2=numer;denom2=denom); ) default(realprecision,28); }
%Y A086397 Denominators are A118612.
%K A086397 frac,more,nonn
%O A086397 1,1
%A A086397 _Cino Hilliard_, Sep 06 2003
%E A086397 More terms from _Cino Hilliard_, Jan 15 2005
%E A086397 Edited by _N. J. A. Sloane_, Aug 06 2009 at the suggestion of _R. J. Mathar_