cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086431 Involution of natural numbers induced by the Catalan bijection gma086431 acting on symbolless S-expressions encoded by A014486/A063171.

This page as a plain text file.
%I A086431 #9 Oct 15 2015 10:55:25
%S A086431 0,1,2,3,4,5,7,6,8,9,11,10,12,13,17,18,16,14,15,21,20,19,22,23,28,25,
%T A086431 30,33,24,29,26,31,32,27,35,34,36,45,48,46,49,50,44,47,42,37,39,43,38,
%U A086431 40,41,58,59,57,54,55,56,53,51,52,63,62,61,60,64,65,79,70,84,93
%N A086431 Involution of natural numbers induced by the Catalan bijection gma086431 acting on symbolless S-expressions encoded by A014486/A063171.
%C A086431 This Catalan bijection reflects the interpretations (pp)-(rr) of Stanley, obtained with the "descending slope mapping" from the Dyck paths encoded by A014486.
%H A086431 A. Karttunen, <a href="/A014486/a014486.ps.gz">Noncrossing Murasaki diagrams obtained via descending slope mapping illustrated up to seven sticks</a>
%H A086431 A. Karttunen, <a href="http://www.iki.fi/~kartturi/matikka/Nekomorphisms/gatomorf.htm">Gatomorphisms</a> (With the complete Scheme source)
%H A086431 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec/catalan.pdf">Exercises on Catalan and Related Numbers</a> (including 66 combinatorial interpretations)
%H A086431 <a href="/index/Per#IntegerPermutationCatAuto">Index entries for signature-permutations induced by Catalan automorphisms</a>
%e A086431 Map the Dyck paths (Stanley's interpretation (i)) to noncrossing Murasaki-diagrams (Stanley's interpretation (rr)) by drawing a vertical line above each descending slope \ and connect those vertical lines that originate from the same height without any lower valleys between, as in illustration below:
%e A086431 ..................................................
%e A086431 .....___________..................................
%e A086431 ....|...|....._.|.................................
%e A086431 ....|..||...||.||..................___________....
%e A086431 ....|..||...||.||.................|...|...._..|...
%e A086431 ....|..||../\|.||..i.e..equal.to..|.|.|.|.|.|.|...
%e A086431 ....|./\|./..\/\|.................|.|.|.|.|.|.|...
%e A086431 .../\/..\/......\.................|.|.|.|.|.|.|...
%e A086431 ...10110011100100=11492=A014486(250)
%e A086431 Now the Catalan bijection gma086431 gives the parenthesization such that the corresponding Murasaki-diagram is a reflection of the original one:
%e A086431 .....___________..................................
%e A086431 ....|...._..|...|.................................
%e A086431 ....|...|.|||..||..................___________....
%e A086431 ....|...|.|||..||.................|.._....|...|...
%e A086431 ....|../\/\||..||..i.e..equal.to..|.|.|.|.|.|.|...
%e A086431 ....|./....\|./\|.................|.|.|.|.|.|.|...
%e A086431 .../\/......\/..\.................|.|.|.|.|.|.|...
%e A086431 ...10111010001100=11916=A014486(296)
%e A086431 So we have A086431(250)=296 and A086431(296)=250.
%Y A086431 a(n) = A057164(A085161(A057164(n))) = A086425(A057164(A086426(n))). Occurs in A073200. Cf. also A086427, A086430.
%Y A086431 Number of cycles: A007123. Number of fixed points: A001405. (In range [A014137(n-1)..A014138(n-1)] of this permutation.).
%K A086431 nonn
%O A086431 0,3
%A A086431 _Antti Karttunen_, Jun 23 2003