This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086464 #20 Feb 16 2025 08:32:50 %S A086464 5,1,1,0,9,7,0,8,2,5,8,5,8,1,5,2,5,7,1,0,4,7,7,9,5,2,3,3,6,6,6,6,2,6, %T A086464 2,0,7,5,4,7,4,3,5,0,5,0,7,2,7,3,2,1,5,0,8,5,0,2,9,4,3,2,3,9,5,9,7,2, %U A086464 3,6,2,4,3,1,0,5,1,3,0,6,6,4,2,9,6,5,1,7,7,2,5,2,8,0,2,4,9,6,0,9,1,5 %N A086464 Decimal expansion of 17/36*zeta(4). %H A086464 Renzo Sprugnoli, <a href="https://www.emis.de/journals/INTEGERS/papers/g27/g27.Abstract.html">Sums of reciprocals of the central binomial coefficients</a>, El. J. Combin. Numb. Th. 6 (2006) # A27 %H A086464 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CentralBinomialCoefficient.html">Central Binomial Coefficient</a>. %F A086464 Equals Sum_{n>=1} 1/(n^4 * binomial(2*n,n)). %e A086464 0.51109708258581525710477952336666262075474350507273... %t A086464 RealDigits[17*Zeta[4]/36, 10, 120][[1]] (* _Amiram Eldar_, May 25 2023 *) %o A086464 (PARI) zeta(4)*17/36 \\ _Michel Marcus_, Jul 31 2015 %Y A086464 Cf. A073010, A073016, A086463. %K A086464 nonn,cons %O A086464 0,1 %A A086464 _Eric W. Weisstein_, Jul 21 2003