This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086468 #27 Feb 16 2025 08:32:50 %S A086468 4,8,0,8,2,2,7,6,1,2,6,3,8,3,7,7,1,4,1,5,9,8,9,5,2,6,4,6,0,4,5,7,9,9, %T A086468 9,6,3,0,5,9,9,4,5,1,6,9,3,6,1,9,9,5,5,2,7,1,6,9,0,8,6,2,2,1,3,6,7,3, %U A086468 5,2,8,2,3,1,4,5,2,5,2,3,6,0,7,4,5,8,2,3,4,9,4,4,3,7,3,4,1,0,3,2,5,8 %N A086468 Decimal expansion of 2*zeta(3)/5. %D A086468 Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.46. %D A086468 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43. %H A086468 G. C. Greubel, <a href="/A086468/b086468.txt">Table of n, a(n) for n = 0..10000</a> %H A086468 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2007). See p. 446. %H A086468 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CentralBinomialCoefficient.html">Central Binomial Coefficient</a>. %F A086468 Equals Sum_{n>=1} (-1)^(n-1)/(n^3*binomial(2*n,n)). %F A086468 Equals 2*A002117/5. - _R. J. Mathar_, Feb 08 2009 %F A086468 Equals (1/10)*Sum_{k>=1} (30*k - 11)/((2*k - 1)*k^3*binomial(2*k,k)^2) (see Finch). - _Stefano Spezia_, Nov 01 2024 %e A086468 0.48082276126383771415989526460457999630599451693620... %t A086468 First[RealDigits[N[2*Zeta[3]/5, 100]]] (* _Stefano Spezia_, Nov 02 2018 *) %o A086468 (PARI) 2*zeta(3)/5 \\ _Michel Marcus_, Nov 02 2018 %o A086468 (Magma) SetDefaultRealField(RealField(250)); L:=RiemannZeta(); 2*Evaluate(L,3)/5; // _G. C. Greubel_, Nov 02 2018 %Y A086468 Cf. A002117, A086465, A086466, A086467. %K A086468 nonn,cons %O A086468 0,1 %A A086468 _Eric W. Weisstein_, Jul 21 2003