A086482 Beginning with 1, the smallest number not included earlier such that the n-th partial product is an n-th power; or the geometric mean of the first n terms is an integer.
1, 4, 2, 32, 128, 8, 1024, 16, 8192, 32768, 64, 262144, 1048576, 256, 8388608, 512, 67108864, 268435456, 2048, 2147483648, 4096, 17179869184, 68719476736, 16384, 549755813888, 2199023255552, 65536, 17592186044416, 131072, 140737488355328
Offset: 1
Keywords
Examples
a(5) = 128: the product of the first five terms is 1*4*2*32*128 = 2^15 = 8^5; 4 gives 4^5, also a 5th power, but 4 is already included.
Crossrefs
Cf. A002251.
Programs
-
PARI
v=[1];n=1;while(n<10^4,p=n*prod(i=1,#v,v[i]);if(ispower(p,#v+1)&&!vecsearch(vecsort(v),n),v=concat(v,n);n=1);n++);v \\ Derek Orr, May 27 2015
Formula
a(n) = 2^A002251(n-1). - David Wasserman, Mar 07 2005
Extensions
More terms from David Wasserman, Mar 07 2005
Comments