cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086514 Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...

This page as a plain text file.
%I A086514 #18 Jun 13 2015 00:51:06
%S A086514 1,2,3,6,13,26,47,78,121,178,251,342,453,586,743,926,1137,1378,1651,
%T A086514 1958,2301,2682,3103,3566,4073,4626,5227,5878,6581,7338,8151,9022,
%U A086514 9953,10946,12003,13126,14317,15578,16911,18318,19801,21362,23003,24726
%N A086514 Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...
%C A086514 {a(k): 1 <= k <= 4} = divisors of 6. - _Reinhard Zumkeller_, Jun 17 2009
%H A086514 B. Berselli, <a href="/A086514/b086514.txt">Table of n, a(n) for n = 1..10000</a> - _Bruno Berselli_, May 31 2010
%H A086514 R. Zumkeller, <a href="/A161700/a161700.txt">Enumerations of Divisors</a> - _Reinhard Zumkeller_, Jun 17 2009
%H A086514 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A086514 a(n)+ n-2 = {a(n-1) +a(n+1)}/2
%F A086514 a(n) = (n^3-6*n^2+14*n-6)/3.
%F A086514 Contribution from _Bruno Berselli_, May 31 2010: (Start)
%F A086514 G.f.: (1-2*x+x^2+2*x^3)/(1-x)^4.
%F A086514 a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0 with n>4. For n=9, 121-4*78+6*47-4*26+13 = 0.
%F A086514 a(n) = ( A177342(n)-A000290(n-1)-3*A014106(n-2) )/4 with n>1. For n=11, a(11) = (1671-100-3*189)/4 = 251. (End)
%e A086514 2 = (1+3)/2 -0. 3 = (2+6)/2 - 1, 6 = (3+13)/2 - 2, etc.
%o A086514 (PARI) a(n) = n*(n^2-6*n+14)/3-2 \\ _Charles R Greathouse IV_, Jun 11 2015
%Y A086514 Cf. A005408, A000124, A016813, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A080856, A161711, A161712, A161713, A161715, A006261, A177342, A014106, A000290.
%K A086514 nonn,easy
%O A086514 1,2
%A A086514 _Amarnath Murthy_, Jul 29 2003
%E A086514 More terms from _David Wasserman_, Mar 10 2005