cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086525 a(n) = a(( a(n-2))*(1-mod(n,2))+a(n-1)*(mod(n,2))) + a((n - a(n-2))*(1-mod(n,2))+(n-a(n-1))*(mod(n,2))).

This page as a plain text file.
%I A086525 #12 Mar 30 2012 17:34:13
%S A086525 1,1,2,3,3,4,5,6,6,7,8,8,9,10,10,11,12,13,13,14,15,16,16,17,18,18,19,
%T A086525 20,20,21,22,23,23,24,25,25,26,27,27,28,29,30,30,31,32,32,33,34,34,35,
%U A086525 36,37,37,38,39,40,40,41,42,42,43,44,44,45,46,47,47,48,49,50,50,51,52,52
%N A086525 a(n) = a(( a(n-2))*(1-mod(n,2))+a(n-1)*(mod(n,2))) + a((n - a(n-2))*(1-mod(n,2))+(n-a(n-1))*(mod(n,2))).
%C A086525 The sequence o2 mentioned in A086841.
%H A086525 <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>
%t A086525 digits=200 Mc[n_Integer?Positive] :Mc[n] =Mc[( Mc[n-2])*(1-Mod[n, 2])+Mc[n-1]*(Mod[n, 2])] + Mc[(n - Mc[n-2])*(1-Mod[n, 2])+(n-Mc[n-1])*(Mod[n, 2])] Mc[1] = Mc[2] = 1 a1=Table[Mc[n], {n, 1, digits}]
%Y A086525 Cf. A004001, A005185, A086335, A086841, A005229.
%K A086525 nonn
%O A086525 1,3
%A A086525 _Roger L. Bagula_, Sep 14 2003
%E A086525 Edited by _N. J. A. Sloane_, Nov 07 2007